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Multiplicity of species in some replicative systems
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In an attempt to explain the uniqueness of the coding mechanism of living cells as contrasted with the
multispecies structure of ecosystems we examine two models of individuals with some replicative properties.
In the first model the system generically remains in a multispecies state. Even though for some of these species
the replicative probability is very high, they are unable to invade the system. In the second model, in which the
death rate depends on the type of the species, the system relatively quickly reaches a single-species state and
fluctuations might at most bring it to yet another single-species state.
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I. INTRODUCTION

The problem of the origin of life and its early evolution
clearly one of the most fundamental problems of mod
science. In spite of considerable efforts, even the most b
questions in this multidisciplinary issue remain unanswer
The basic frame of most theories of the emergence of
was set many years ago by Oparin@1#, who proposed that life
emerged as a result of the gradual evolution of nonorga
matter. Oparin’s ideas were to some extent verified by
periments done by Miller and Urey@2#, who showed that for
a system of water and an atmosphere consisting of gases
were thought to be common on the prebiological Earth, e
trical discharges resulted in the formation of some am
acids and nucleotides. It is believed that once created in
ficient concentrations, these molecules entered complic
synthetic reactions, which produced more and more comp
molecules. Some of these complex molecules had cata
and presumably to some extent even autocatalytic prope
@3#. The autocatalytic molecules~or rather systems of them!,
if of sufficient stability, were clearly more likely to surviv
in a competition for reactants. The gradual evolution of su
autocatalytic systems, subjected to Darwinian selection,
sulted in mastering their surviving skills and eventually l
to the emergence of life. Even though the above-sketc
scenario might seem plausible, many of its important det
are still unresolved@4#.

The replicatory mechanism of contemporary living ce
is very sophisticated and has remained basically unchan
since the emergence of the first living cells, which presu
ably took place about 3.5–4 billion years ago. One of
characteristic features of this mechanism is that the task
coding and catalysis are being assigned to different ma
molecules, namely to nucleic acids and proteins, resp
tively. Moreover, the code, i.e., the way amino acids
encoded by nucleotides, is universal for all living cells.
suggests an interesting possibility that all living cells a
actually descendants of a single pra-cell, which happene
develop the most effective surviving skills.

At the same time, however, it raises some questions.
might expect that in the search for the most effective ce
nature tried many variants of different effectiveness. W
did a certain code predominate all other variants? Was
PRE 611063-651X/2000/61~3!/3009~6!/$15.00
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variant really of such an enormous effectiveness or ma
predomination was somehow a generic feature of prebi
dynamics? One can notice, however, that in any contem
rary ecosystem a large number of species coexist and t
species are clearly of different effectiveness. Neverthel
the invasion of an ecosystem by a single species is an u
servable phenomenon. Although very different, both conte
porary ecosystems and primeval soup might be regarde
composed of certain individuals with some replicative pro
erties. Why thus did nature select the single-species solu
at the early stages of life and why does it prefer multispec
solutions at later stages?

Various aspects of the problem of the origin of life an
biological evolution have been already modeled@5#. Even
though such models are, by necessity, highly simplified, th
help us to understand the essence of these complex phe
ena. For example, one can construct simple models of
logical evolution which explain why the dynamics of extin
tion of species has some scale-invariant properties@6#.

The problem of multiplicity of species in replicative sy
tems has been also already addressed in the literatur
comprehensive review of the biochemical aspects of
problem was written by Orgel@7# and most recently by Sza
thmáry @8#. Certain simple models of replicative system
have also been examined recently@9,10#. For example, in the
model discussed by Szathma´ry and Maynard Smith an en
semble of replicators is described in terms of different
equations. In particular, the concentration of thei th replica-
tor is described by the following equation@8#:

dxi /dt5kixi
p , ~1!

whereki is the growth rate constant of thei th replicator and
p is the order of replication. It turns out that asymptotict
→`) concentrations~or rather their ratios! depend onp. For
p51 ~Malthusian growth!, the replicator with the largestki
becomes dominant and such a case is characterized as
vival of the fittest.’’ Forp,1 ~parabolic growth!, the ratios
of concentrations become finite, which is termed as ‘‘s
vival of everybody.’’ In the casep.1 ~hyperbolic growth!,
the dominant replicator is the one with the largest produc
the initial concentration and the growth rate constant, wh
is termed as ‘‘survival of the common.’’ The interest
3009 ©2000 The American Physical Society
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growth laws withpÞ1 is partially motivated experimentally
since it was shown that certain oligonucleotides, which p
sumably played an important role in prebiotic dynamics,
deed follow the growth law withp,1 @11,12#. Since such a
growth implies ‘‘survival of everybody,’’ we are faced wit
a problem of the transition to the Malthusian growth, whi
would explain ‘‘survival of the fittest.’’ However, recently i
was shown by Lifson and Lifson that for more gene
growth laws than Eq.~1!, the ‘‘survival of the fittest’’ takes
place even in thep,1 case@10#.

An important assumption underlying models leading
differential equations like Eq.~1! is that replicators are per
fect, i.e., a replicator produces at a certain speed its e
copy. In our opinion, to model evolution at early stages
should rather consider a system of imperfect replicato
which, for example, would produce their copies only with
certain probability and otherwise they would mutate.

In the present paper, we examine two simple models
such systems. In our models, replicators, which might re
cate or mutate, exist in infinitely many varieties@13#. As our
main result, we show that behavior of these models stron
depends on some details of dynamics of these mod
Namely, only in one of these models does evolution proc
in a single-species way, i.e., with the majority of the syst
descending from the same ancestor. In the second mo
such single-species states are very unstable and the sy
evolves through multispecies paths.

In Sec. II we define our models and present their ba
properties. In Sec. III we examine in more details the beh
ior of each model, emphasizing the difference betwe
single- and multispecies evolution. Section IV contains o
conclusions.

II. MODELS AND THEIR BASIC PROPERTIES

A. Model I

Let us consider a system composed initially ofL individu-
als. These individuals might be regarded as complex m
ecules at the prebiotic era immersed in the primeval soup
thus involved in a number of catalytic or autocatalytic rea
tions. With each individual we assign randomly the replic
tion probabilitypi (0,pi,1 for i 51,2, . . . ,L) that thei th
individual will exactly replicate itself in the course of repro
duction. The dynamics of this model, which in the followin
will be referred to as Model I, is specified as follows.

~1! Choose an individual at random. The chosen in
vidual is denoted byi.

~2! With the probabilityL/N the i th individual dies. The
constantN@1 might be regarded as a certain ‘‘environme
tal capacity.’’ Namely, provided that initially we haveL
<N, L will never exceedN.

~3! With the probability 12L/N the i th individual sur-
vives and produces a new individualj. The probabilitypj
assigned to thej th individual is equal topi ~parent’s value!
with the probabilitypi and is equal to a random number fro
the interval~0,1! with the probability 12pi . This rule means
that if a copying error happens, it dramatically changes
properties of the new individual.

These rules imply that in the steady state the death
(L/N) equals the reproduction rate (12L/N) and thus on
averageL5N/2. As far as the number of individuals is con
-
-

l

ct
e
s,

f
i-

ly
ls.
d

el,
tem

ic
-
n
r

l-
nd
-
-

-

-

e

te

cerned, Model I is equivalent to a certain random walk pro
lem. Indeed, from the rules stated above one can infer
following equation for the probabilityP(L,t) that in our sys-
tem there areL individuals at timet:

P~L,t1D!5
L

N
P~L11,t !1S 12

L

ND P~L21,t !. ~2!

This equation describes changes in our system after upda
a single molecule. To conform to the Monte Carlo simu
tions presented later, we assume that such a single up
takes 1/L of time ~i.e., a unit of time corresponds to a singl
on average, update of each individual!. Thus, in Eq.~2! we
haveD51/L. Introducing the variableM5L2N/2, we can
rewrite Eq.~2! as

PS N

2
1M ,t1D D5S 1

2
2

M

N D PS N

2
1M21,t D

1S 1

2
1

M

N D PS N

2
1M11,t D , ~3!

which is clearly the equation of a random walk with attra
tion towardM50, i.e., L5N/2. It has already been show
that the so-called ‘‘dog-flea’’ model is also equivalent to
similar random walk problem with attraction@14# and that
fluctuations in this model around equilibrium (M50) be-
come negligible in the limit, which in our case correspon
to N→`. Thus, we expect that in Model I fluctuations of th
number of individuals aroundL5N/2 are also small for large
N.

To examine replicative properties of our model, we res
first to Monte Carlo simulations. Since the implementation
the above rules on the computer is rather straightforward,
present only the results of these simulations. In Fig. 1
present the time evolution of the average replication pr
ability p(t)5(1/L)( i 51

L pi . Simulations were done forN
5107 and initially the probabilitiespi ( i 51, . . . ,N) were
chosen at random. In all simulations reported in the pres
paper the initial number of individualsL is equal toN. One
can clearly see that the average replication probability

FIG. 1. The average replication probabilityp(t) as a function of
time t for Model I ~solid line! and Model II ~dotted line!. Simula-
tions were performed forN5107 and initially the probabilities
pi ( i 51, . . . ,N) were chosen at random.
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creases in time but the increase is very slow and it is
obvious what value is reached in the steady state~i.e., for t
→`).

However, below we present some analytical calculatio
which show that if the limitN→` is taken first, then fort
→` the average replication probabilityp(t) converges to
unity. Our strategy is to write the evolution equation for t
higher order moments of replication probability and then
solve the resulting infinite set of equations in the steady st
First let us assume that the evolution in our model las
long enough to equilibrate it with respect to the number
moleculesL. Thus, we approximate the death and reprod
tion probabilities asL/N512L/N5 1

2 . Introducing the no-
tation pl(t)5(1/L)( i 51

L pi
l , wherel 51,2, . . . , we canwrite

the following evolution equation for the first moment ofpi
@i.e., for p(t)#:

N

2
p1~ t1D!2

N

2
p1~ t !52

1

2
p1~ t !

1
1

2 H p2~ t !1
1

2
@12p1~ t !#J ,

~4!

where we putN/2 as an average number of individuals. T
first and second terms on the right-hand side of Eq.~4! de-
scribe the changes due to a single update caused, re
tively, by the death and reproduction processes. The t
1
2 @12p1(t)# corresponds to production of an individual wi
a randomly assigned replication probability, which thus
average takes the value1

2 . We can write similar equations fo
arbitrary l:

N

2
pl~ t1D!2

N

2
pl~ t !52

1

2
pl~ t !1

1

2 H pl 11~ t !1
1

l 11

3@12p1~ t !#J ,

for l 51,2, . . . . ~5!

In Eq. ~5! we used the fact that thel th moment of a random
variable, which is uniformly distributed on~0,1!, is equal to
*0

1slds51/(L11). In the steady state, the left-hand side
Eq. ~5! is zero and thus we obtain

pl5pl 111
1

l 11
~12p1! for l 51,2, . . . . ~6!

This infinite set of equations can be solved. Namely, wh
we add Eqs.~6! for l 51,2, . . . , all higher-order moments
cancel out and we obtain

p15~12p1!(
i 52

`
1

i
, ~7!

and thusp15( i 52
` (1/i )/( i 51

` (1/i )51, since both series di
verge and differ only by unity. Similarly, all other momen
pl in the steady state are equal to 1. Thus we expect tha
t
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the limit t→` the replicative probabilityp(t) in Fig. 1 in-
creases to unity even though the convergence seems t
very slow.

B. Model II

Before discussing other properties of Model I, let us co
sider the model where the probability of death of a cert
individual depends not only on the total number of individ
als ~as in Model I! but also on the individual itself. Such
modification is motivated by the fact that in the primev
soup the survival of a molecule was determined not only
the access to substrates~and then the total number of mo
ecules is likely to determine the death rate! but also by the
stability of a given molecule against, e.g., radiation, whi
clearly depends on the type of this molecule.

Thus, let us consider the model which in the followin
will be referred to as Model II. To each individuali, in ad-
dition to the replication probabilitypi we assign randomly
certain individual survival probabilityr i (0,r i,1). The
dynamics of this model is specified as follows.

~1! Choose an individual at random. The chosen in
vidual is denoted byi.

~2! With the probabilityL/N the i th individual dies due to
the lack of reproductive substrates.

~3! Provided that the individual survived the previou
step, ~a! it dies with the probability 12r i , ~b! it survives
with the probabilityr i and reproduces according to the ru
analogous to that of Model I. Namely, the new individu
with the probabilitypi has the same replication probabilit
and death probability as its parent~i.e., pi and r i , respec-
tively! and with the probability 12pi these probabilities are
chosen randomly anew.

For r i51 (i 51, . . . ,L) Model II becomes equivalent to
Model I. Monte Carlo simulations for Model II are als
straightforward and we present only the results. In Fig. 1
present the average replication probabilityp(t) defined in
the same way as for Model I. One can see that the con
gence to unity is in this model much faster than in Mode

III. SINGLE- VERSUS MULTISPECIES EVOLUTION

But there are more important differences between th
models than the rate of convergence. Certain indication

FIG. 2. The plot of log10@12p(t)# as a function of log10(t) for
N5105 and initial conditions as in Fig. 1.
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FIG. 3. The replication probabilitypi as a function ofi for Model I ~small dots! and Model II~diamonds! after 5000 Monte Carlo step
and forN5105. Almost all individuals for Model II have the same value ofpi50.9996 . . . and thecorresponding diamonds constitute
thick line in the upper part of the figure.
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different behavior are seen in Fig. 2, where we plot
2p(t) as a function of time in a logarithmic scale. One c
see that the late-time evolution of Model II proceeds in st
between which the system basically remains at the s
level of p(t) and no indication of such a stepwise behavior
seen for Model I. This stepwise behavior suggests t
Model II remains mostly in a single-species state with
majority of individuals belonging to the same species. In
viduals i and j belong to the same species ifpi5pj and r i
5r j ; for Model I the second condition is always satisfied

FIG. 4. Occupation of a dominant speciess as a function of time
for Model I ~bottom lines! and Model II ~top lines!. In the initial
configuration all individuals are identical with the replication a
death probabilities equal to 0.9 or 0.99. Simulations were done
N523104.
s
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To confirm such a scenario we present in Fig. 3 snaps
configurations for Models I and II after 5000 Monte Car
steps andN5105. Indeed, after this simulation time Model I
was brought to a single-species state with only few individ
als of piÞ0.9996 . . . ~they are not shown in Fig. 3 sinc
they all havepi,0.99). On the other hand, Model I sti
remains in the multispecies state.

We would like to point out that, of course, for finiteN
there exists a finite probability that Model I can be broug
into a single-species state~and for smallN one can indeed
see such a behavior in simulations! but for largeN(;105)
this would require an extremely long simulation time. Wh

r
FIG. 5. The occupation of the dominant speciess as a function

of time for Model I. Simulations, were done forN523104 and
random initial probabilitiespi ( i 51,2, . . . ,N).
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is, however, more important is that for Model I singl
species states are relatively unstable and this model mo
remains in multispecies state. Such a behavior is clearly s
in Fig. 4, where we show the time evolution of the perce
ages of individuals belonging to a dominant species in t
system. As an initial configuration we have chosen a sing
species state with prescribed values of replication and d
probabilities, namely, we setpi5r i5p0, wherep050.9 or
0.99 for i 51,2, . . . ,N ~for Model I, r i51 independently on
p0). One can see that Model I indeed quickly abandons
single-species state. We have checked that also for a la
p0 the behavior of Model I is basically the same and t
model quickly evolves toward the multispecies state. Evo
tion of Model II is different. When prepared in a state
largep0 ~e.g., 0.99!, the model remains in this state for ve
long time. Even whenp0 is smaller~e.g., 0.9!, this model,
after some short transient, ends up in a single-species s
Further evolution of Model II consists of small fluctuation
within such a state, which sometimes might be stro
enough to bring the system, again via some short transien
another single-species state and usually with larger rep
tion and survival probabilities.

Such a scenario is also confirmed in Figs. 5–7. We sim
lated the system of the sizeN523104 and with random
initial probabilities pi and r i . In Fig. 5, which shows the
occupation of dominant speciess, one can see that Model
has rather irregular behavior. Sometimes a dominant spe
occupies a great majority of the system (s;1) but some-
times it is only a small fraction of the system. The behav
of Model II is different ~Fig. 6!. The dominant species a

FIG. 6. The occupation of the dominant speciess as a function
of time for Model II. Simulations were done forN523104 and
random initial probabilitiespi and r i ( i 51,2, . . . ,N). Three large
fluctuations seen fort,50 000 resulted in changing the domina
species~see Fig. 7!.
fe
f-
tly
en
-

-
th

e
er

-

te.

g
to
a-

-

ies

r

most always occupies most of the system. Only during v
rare and short-lived fluctuations, doess become substantially
smaller than unity. In Fig. 7 we show the replication pro
ability of the dominant species for the Monte Carlo ru
shown in Figs. 5 and 6. One can see that in Model II, co
trary to Model I, the dominant species are very long-lived.
comparison of Fig. 7 with Fig. 5 shows that even when
dominant species is unchanged, the percentages occupied by
it might fluctuate wildly.

IV. CONCLUSIONS

We have examined two very simple models of systems
replicative individuals. Although both models seem
evolve toward the state of perfect replicability, their evol
tion is markedly different. For Model II, evolution proceed
through a sequence of consecutive transitions, betw
which the system remains basically in a single-species s
~i.e, with almost all individuals being identical!. In our opin-
ion, this model might describe prebiotic evolution until th
invention of the universal code. According to this mod
when the relatively stable and almost error-free replicat
mechanism was found, it quickly invaded the whole syste
On the other hand, Model I during its evolution remai
mostly in a multispecies state. Such a multispecies struc
resembles modern ecosystems, where a large number of
cies coexist and are constantly struggling for survival.

Finally, let us notice that although the evolution of a sy
tem as a whole seems to proceed slower in Model I than
Model II ~Fig. 1!, there are some species in Model I wi
replicative probabilities very close to unity~Figs. 3 and 7!.
Thus, multispecies dynamics in Model I enhances nuclea
of species of very high effectiveness. However, even they
unlikely to ‘‘reign’’ for a long time.

FIG. 7. The replication probabilitypi of the dominant species
for Model I ~dots! and Model II ~densely plottedL which consti-
tute basically a thick line atpi;0.997).
,
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