PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Multiplicity of species in some replicative systems
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In an attempt to explain the uniqueness of the coding mechanism of living cells as contrasted with the
multispecies structure of ecosystems we examine two models of individuals with some replicative properties.
In the first model the system generically remains in a multispecies state. Even though for some of these species
the replicative probability is very high, they are unable to invade the system. In the second model, in which the
death rate depends on the type of the species, the system relatively quickly reaches a single-species state and
fluctuations might at most bring it to yet another single-species state.

PACS numbd(s): 87.10+e

I. INTRODUCTION variant really of such an enormous effectiveness or maybe
predomination was somehow a generic feature of prebiotic
The problem of the origin of life and its early evolution is dynamics? One can notice, however, that in any contempo-
clearly one of the most fundamental problems of moderrfary ecosystem a large number of species coexist and these
science. In spite of considerable efforts, even the most basgPecies are clearly of different effectiveness. Nevertheless,
questions in this multidisciplinary issue remain unansweredthe invasion of an ecosystem by a single species is an unob-
The basic frame of most theories of the emergence of liféservable phenomenon. Although very different, both contem-
was set many years ago by Opad, who proposed that life Porary ecosystems and primeval soup might be regarded as
emerged as a result of the gradual evolution of nonorgani€omposed of certain individuals with some replicative prop-
matter. Oparin’s ideas were to some extent verified by exerties. Why thus did nature select the single-species solution
periments done by Miller and Urdy2], who showed that for at the early stages of life and why does it prefer multispecies
a system of water and an atmosphere consisting of gases th@lutions at later stages?
were thought to be common on the prebiological Earth, elec- Various aspects of the problem of the origin of life and
trical discharges resulted in the formation of some amind?iological evolution have been already mode[é&d. Even
acids and nucleotides. It is believed that once created in sufbough such models are, by necessity, highly simplified, they
ficient concentrations, these molecules entered complicatdtf!P Us to understand the essence of these complex phenom-
synthetic reactions, which produced more and more complegna. For example, one can construct simple models of bio-
molecules. Some of these complex molecules had catalyti®gical evolution which explain why the dynamics of extinc-
and presumably to some extent even autocatalytic propertid¥n of species has some scale-invariant propefti¢s
[3]. The autocatalytic moleculdsr rather systems of theim The problem of multiplicity of species in replicative sys-
if of sufficient stability, were clearly more likely to survive tems has been also already addressed in the literature. A
in a competition for reactants. The gradual evolution of sucifomprehensive review of the biochemical aspects of this
autocatalytic systems, subjected to Darwinian selection, reProblem was written by Org¢l7] and most recently by Sza-
sulted in mastering their surviving skills and eventually ledthmay [8]. Certain simple models of replicative systems
to the emergence of life. Even though the above-sketchefiave also been examined receriy10]. For example, in the
scenario might seem plausible, many of its important detail§nodel discussed by Szathrgaand Maynard Smith an en-
are still unresolved4]. semble of replicators is described in terms of differential
The replicatory mechanism of contemporary living cellsequations. In particular, the concentration of ttte replica-
is very sophisticated and has remained basically unchangd@r is described by the following equati¢8l:
since the emergence of the first living cells, which presum-
ably took place about 3.5—4 billion years ago. One of the dx; /dt=kxf, (1)
characteristic features of this mechanism is that the tasks of
coding and catalysis are being assigned to different macrovherek; is the growth rate constant of thith replicator and
molecules, namely to nucleic acids and proteins, resped is the order of replication. It turns out that asymptotic (
tively. Moreover, the code, i.e., the way amino acids are— ) concentrationgor rather their ratiosdepend orp. For
encoded by nucleotides, is universal for all living cells. It p=1 (Malthusian growth, the replicator with the largest
suggests an interesting possibility that all living cells arebecomes dominant and such a case is characterized as “sur-
actually descendants of a single pra-cell, which happened taval of the fittest.” Forp<<1 (parabolic growth, the ratios
develop the most effective surviving skills. of concentrations become finite, which is termed as ‘“sur-
At the same time, however, it raises some questions. Oneival of everybody.” In the cas@>1 (hyperbolic growth,
might expect that in the search for the most effective cellsthe dominant replicator is the one with the largest product of
nature tried many variants of different effectiveness. Whythe initial concentration and the growth rate constant, which
did a certain code predominate all other variants? Was thiss termed as “survival of the common.” The interest in

1063-651X/2000/6(B)/30096)/$15.00 PRE 61 3009 ©2000 The American Physical Society



3010 ADAM LIPOWSKI PRE 61

growth laws withp+# 1 is partially motivated experimentally, ‘-‘ ' ' ' '
since it was shown that certain oligonucleotides, which pre-
sumably played an important role in prebiotic dynamics, in- ] ——
deed follow the growth law witlp<<1 [11,17]. Since such a
growth implies “survival of everybody,” we are faced with ook
a problem of the transition to the Malthusian growth, which
would explain “survival of the fittest.” However, recently it
was shown by Lifson and Lifson that for more general
growth laws than Eq(l1), the “survival of the fittest” takes
place even in thep<1 casg10]. o7

An important assumption underlying models leading to
differential equations like Eq.) is that replicators are per- 06
fect, i.e., a replicator produces at a certain speed its exac
copy. In our opinion, to model evolution at early stages we . , , ,
should rather consider a system of imperfect replicators, 0 2000 400 e000 8000 10000
which, for example, would produce their copies only with a o - )
certain probability and otherwise they would mutate. _ FIG. 1. The average r_epllcatlon probabiljpyt) as a funqtlon of

In the present paper, we examine two simple models 0f!met for Model | (solid line) ang Modgl I.I.(dotted ling. Slmglfi-
such systems. In our models, replicators, which might rep“_tlons_ were performed foN=10" and initially the probabilities
cate or mutate, exist in infinitely many varietigsg]. As our ~ Pi (i=1....N) were chosen at random.

main result, we show that behavior of these models strongl)éemed Model | is equivalent to a certain random walk prob-

depends on some details of dynamics of these model%m Indeed, from the rules stated above one can infer the
Namely, only in one of these models does evolution procee bllowing equation for the probabilit(L ) that in our sys-

in a single-species way, i.e., with the majority of the syste L L
descending from the same ancestor. In the second mogéﬁm there aré- individuals at timet:

such single-species states are very unstable and the system L L
evolves through multispecies paths. P(L,t+A)= NP(L+ 1,t)+(1— N) P(L-11). (2
In Sec. Il we define our models and present their basic

properties. In Sec. lll we examine in more details the behavyg equation describes changes in our system after updating
lor of each mo'del, QmphaS|z!ng the qm‘erence b.etweel};l single molecule. To conform to the Monte Carlo simula-
single- and multispecies evolution. Section IV contains out;g o presented later, we assume that such a single update
conclusions. takes 1L of time (i.e., a unit of time corresponds to a single,
on average, update of each individualhus, in Eq.(2) we
Il. MODELS AND THEIR BASIC PROPERTIES have A =1/L. Introducing the variabléVl=L—N/2, we can
rewrite Eq.(2) as

model Il

model |

plt)
@

A. Model |
Let us consider a system composed initiallyLdhdividu- N 1 M N
als. These individuals might be regarded as complex mol- P(E“Vl't*A =3~ W) Pl5+M —1,t)
ecules at the prebiotic era immersed in the primeval soup and
thus involved in a number of catalytic or autocatalytic reac- 1 M N
tions. With each individual we assign randomly the replica- + §+ﬁ P E“LM +1t), Q)

tion probabilityp; (0<p;<1 fori=1,2,...L) that theith
individual will exactly replicate itself in the course of repro- which is clearly the equation of a random walk with attrac-
duction. The dynamics of this model, which in the following tion towardM =0, i.e.,L=N/2. It has already been shown

will be referred to as Model I, is specified as follows. that the so-called “dog-flea” model is also equivalent to a
(1) Choose an individual at random. The chosen indi-similar random walk problem with attractidgi4] and that
vidual is denoted by. fluctuations in this model around equilibriunME=0) be-

(2) With the probabilityL/N theith individual dies. The come negligible in the limit, which in our case corresponds
constantN>1 might be regarded as a certain “environmen-to N—o. Thus, we expect that in Model | fluctuations of the
tal capacity.” Namely, provided that initially we have  number of individuals around=N/2 are also small for large
<N, L will never exceed\. N.

(3) With the probability -L/N the ith individual sur- To examine replicative properties of our model, we resort
vives and produces a new individupl The probabilityp;  first to Monte Carlo simulations. Since the implementation of
assigned to th¢th individual is equal tq; (parent’s valug  the above rules on the computer is rather straightforward, we
with the probabilityp; and is equal to a random number from present only the results of these simulations. In Fig. 1 we
the interval(0,1) with the probability - p; . This rule means present the time evolution of the average replication prob-
that if a copying error happens, it dramatically changes thebility p(t)=(1/L)EiL=lpi . Simulations were done foN
properties of the new individual. =10’ and initially the probabilitiegp; (i=1, ... N) were

These rules imply that in the steady state the death ratehosen at random. In all simulations reported in the present
(L/N) equals the reproduction rate {1./N) and thus on paper the initial number of individuals is equal toN. One
averagel = N/2. As far as the number of individuals is con- can clearly see that the average replication probability in-
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creases in time but the increase is very slow and it is nothe limit t—o the replicative probabilityp(t) in Fig. 1 in-
obvious what value is reached in the steady stege, fort creases to unity even though the convergence seems to be
— ), very slow.
However, below we present some analytical calculations
which show that if the limitN—« is taken first, then fot B. Model I
—oo the average replication probabilify(t) converges to Before discussing other properties of Model I, let us con-
unity. Our strategy is to write the evolution equation for thesider the model where the probability of death of a certain
higher order moments of replication probability and then toindividual depends not only on the total number of individu-
solve the resulting infinite set of equations in the steady statedls (as in Model ) but also on the individual itself. Such a
First let us assume that the evolution in our model lastednodification is motivated by the fact that in the primeval
long enough to equilibrate it with respect to the number ofsoup the survival of a molecule was determined not only by
moleculesL. Thus, we approximate the death and reproducthe access to substratéand then the total number of mol-
tion probabilities ad/N=1-L/N=%. Introducing the no- €cules is likely to determine the death pabeit also by the
tation p'(t)=(1/L)EiL:1p!  wherel=1,2, ..., we cawrite stability of a given molecule aga!nst, e.g., radiation, which
the following evolution equation for the first moment pf ~ Cl€arly depends on the type of this molecule. ,
[i.e., for p(t)]: _Thus, let us consider the model whlc;h !n'thg followmg
will be referred to as Model Il. To each individuglin ad-
N N 1 dition to the replication probabilityp; we assign randomly
Epl(t+A)—§p1(t)=—§pl(t) certain individual survival probability; (0<r;<1). The
dynamics of this model is specified as follows.
1 1 (1) Choose an individual at random. The chosen indi-
+3 p2(t)+ 5[1—p1(t)] , vidual is denoted by.
(2) With the probabilityL/N theith individual dies due to
(4) the lack of reproductive substrates.

(3) Provided that the individual survived the previous
where we pulN/2 as an average number of individuals. Thestep, (a) it dies with the probability +r;, (b) it survives
first and second terms on the right-hand side of @j.de-  with the probabilityr; and reproduces according to the rule
scribe the changes due to a single update caused, respetalogous to that of Model I. Namely, the new individual
tively, by the death and reproduction processes. The termith the probabilityp; has the same replication probability
3[1—p*(t)] corresponds to production of an individual with and death probability as its parefite., p; andr;, respec-

a randomly assigned replication probability, which thus ontively) and with the probability + p; these probabilities are
average takes the valge We can write similar equations for chosen randomly anew.
arbitrary|: Forr;=1 (i=1,...L) Model Il becomes equivalent to
Model I. Monte Carlo simulations for Model Il are also
l+1 1 straightforward and we present only the results. In Fig. 1 we
P+ 1+1 present the average replication probabiligt) defined in
the same way as for Model I. One can see that the conver-
gence to unity is in this model much faster than in Model I.

E'tJrA—E't——E'tvL1
SP(t+A) = Sp()=—5p(D)+3

X[l—pl(t)]],
I1l. SINGLE- VERSUS MULTISPECIES EVOLUTION

for I=12,.... ®) But there are more important differences between these

In Eq. (5) we used the fact that tHeh moment of a random models than the rate of convergence. Certain indications of

variable, which is uniformly distributed of®,1), is equal to 04
fés‘ds=1/(L+1). In the steady state, the left-hand side of 08
Eq. (5) is zero and thus we obtain

-08

1 1t
—(1-pYH for 1=1,2,.... ()

I+l
P=p +|+1 12t

[1-p(t)]

This infinite set of equations can be solved. Namely, wheng
we add Egs(6) for I=1,2, ..., allhigher-order moments aer
cancel out and we obtain sl

51
pl:(l_pl)z = (7) 22}

i=2 1

Model Il

24 L L

log(t)

and thusp=3{" ,(1/)/=7_,(1/i)=1, since both series di-
verge and differ only by unity. Similarly, all other moments  FIG. 2. The plot of log{1—p(t)] as a function of logyt) for
p' in the steady state are equal to 1. Thus we expect that iN=10° and initial conditions as in Fig. 1.
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FIG. 3. The replication probabilitp; as a function of for Model | (small dot$ and Model Il(diamond$ after 5000 Monte Carlo steps
and forN=10°. Almost all individuals for Model Il have the same valuemf=0.99% . .. and thecorresponding diamonds constitute a
thick line in the upper part of the figure.

different behavior are seen in Fig. 2, where we plot 1 To confirm such a scenario we present in Fig. 3 snapshot
—p(t) as a function of time in a logarithmic scale. One canconfigurations for Models | and Il after 5000 Monte Carlo
see that the late-time evolution of Model Il proceeds in stepsteps andN=10°. Indeed, after this simulation time Model I
between which the system basically remains at the samwas brought to a single-species state with only few individu-
level of p(t) and no indication of such a stepwise behavior isals of p;#0.99% . .. (they are not shown in Fig. 3 since
seen for Model I. This stepwise behavior suggests thathey all havep;<0.99). On the other hand, Model | still
Model Il remains mostly in a single-species state with theremains in the multispecies state.

majority of individuals belonging to the same species. Indi- We would like to point out that, of course, for finité
vidualsi andj belong to the same speciespf=p; andr; there exists a finite probability that Model | can be brought
=r;,; for Model | the second condition is always satisfied. into a single-species statand for smallN one can indeed
see such a behavior in simulatiorisut for largeN(~10°)

this would require an extremely long simulation time. What
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FIG. 4. Occupation of a dominant specgss a function of time 0 500000 1000000 1500000 2000000 2500000 3000000

for Model | (bottom lineg and Model Il (top line9. In the initial

configuration all individuals are identical with the replication and  FIG. 5. The occupation of the dominant speciess a function
death probabilities equal to 0.9 or 0.99. Simulations were done foof time for Model I. Simulations, were done fdd=2x10* and
N=2x10" random initial probabilitie; (i=1,2,...N).
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FIG. 6. The occupation of the dominant speciess a function FIG. 7. The replication probabilitp; of the dominant species
of time for Model II. Simulations were done fdd=2x10* and  for Model | (dots and Model Il (densely plotted®> which consti-

random initial probabilitie; andr; (i=1,2,... N). Three large  tute basically a thick line gp;~0.997).
fluctuations seen for<<50 000 resulted in changing the dominant . )
speciegsee Fig. 7. most always occupies most of the system. Only during very

rare and short-lived fluctuations, dogbecome substantially
_ _ ) ) smaller than unity. In Fig. 7 we show the replication prob-
is, however, more important is that for Model | single- gpjlity of the dominant species for the Monte Carlo runs
species states are relatively unstable and this model mostbhown in Figs. 5 and 6. One can see that in Model II, con-
remains in multispecies state. Such a behavior is clearly sefary to Model I, the dominant species are very long-lived. A
in Fig. 4, where we show the time evolution of the percent-comparison of Fig. 7 with Fig. 5 shows that even when the
ages of individuals belonging to a dominant species in thedominant species is unchanged, the percersageupied by
system. As an initial configuration we have chosen a singleit might fluctuate wildly.
species state with prescribed values of replication and death
probabilities, namely, we set,=r;=p,, wherep,=0.9 or IV. CONCLUSIONS

0.99 fori=1,2, ... N (for Model |, rj=1 independently on \ye haye examined two very simple models of systems of
Po). One can see that Model | indeed quickly abandons thegpjicative individuals. Although both models seem to
smgle-spemeg state. We ha\{e chepked that also for a larggyolve toward the state of perfect replicability, their evolu-
Po the behavior of Model | is basically the same and thetion is markedly different. For Model |1, evolution proceeds
model quickly evolves toward the multispecies state. Evoluthrough a sequence of consecutive transitions, between
tion of Model Il is different. When prepared in a state of which the system remains basically in a single-species state
largepo (e.9., 0.99, the model remains in this state for very (i.e, with almost all individuals being identigaln our opin-

long time. Even wherp, is smaller(e.g., 0.9, this model, ion, this model might describe prebiotic evolution until the
after some short transient, ends up in a single-species stai@vention of the universal code. According to this model,
Further evolution of Model Il consists of small fluctuations when the relatively stable and almost error-free replicative
within such a state, which sometimes might be strongmechanism was found, it quickly invaded the whole system.
enough to bring the system, again via some short transient, tOn the other hand, Model | during its evolution remains
another single-species state and usually with larger replicamostly in a multispecies state. Such a multispecies structure

tion and survival probabilities. resembles modern ecosystems, where a large number of spe-
Such a scenario is also confirmed in Figs. 5-7. We simueies coexist and are constantly struggling for survival.
lated the system of the sizd=2x10* and with random Finally, let us notice that although the evolution of a sys-

initial probabilitiesp; andr;. In Fig. 5, which shows the tem as a whole seems to proceed slower in Model | than in
occupation of dominant specissone can see that Model I Model Il (Fig. 1), there are some species in Model | with
has rather irregular behavior. Sometimes a dominant speciesplicative probabilities very close to unitfFigs. 3 and 7.
occupies a great majority of the systems~1) but some- Thus, multispecies dynamics in Model | enhances nucleation
times it is only a small fraction of the system. The behaviorof species of very high effectiveness. However, even they are
of Model Il is different (Fig. 6). The dominant species al- unlikely to “reign” for a long time.
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